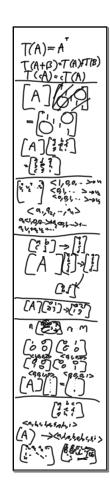
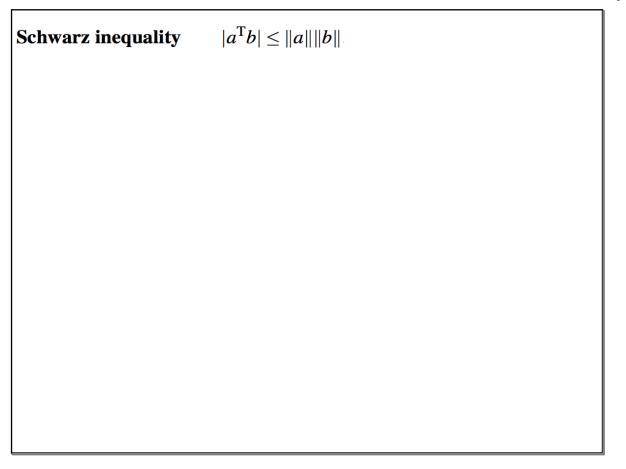
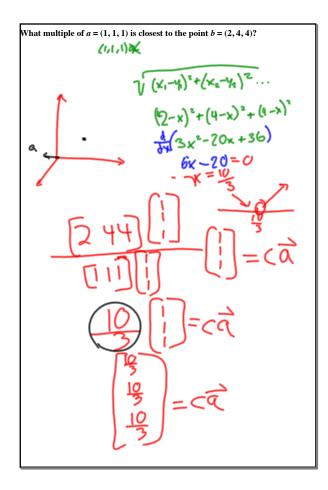
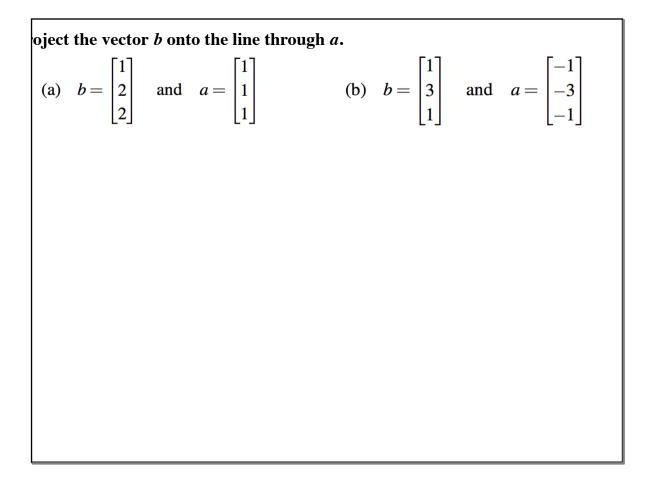

$$\frac{b(b_{1}, b_{2})}{c(b_{1}-a_{1}, b_{2}+a_{2})(2)} = \frac{b(b_{2}^{2}-2abcos(2)}{c(b_{1}-a_{1}, b_{2}+a_{2})(2)} = \frac{b(b_{1}^{2}-2abcos(2)}{c(b_{1}^{2}-a_{1})^{2}+(b_{2}^{2}-a_{2})^{2}} = \frac{(b_{1}^{2}+b_{2}^{2})(b_{2}^{2}+a_{2}^{2})}{c(b_{1}^{2}+b_{2}^{2})(b_{1}$$


 $a^{T}b = \|a\|\|b\|\cos\Theta$ $(0)D = (0(b^{-4})) = (0)D + (0)D +$


Projection
A(4, 1) and B(2, 3)
What is the coordinate of
C, if angle OCB is 90?
C =
$$(7, 14)$$

b = 180 - $(10+42.27)$
= 47.726
 $(10+42.27)$
= 47.726
 $(10+42.27)$
= 47.726
 $(10+42.27)$
= 47.726
 $(10+42.27)$
= 47.726
 $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+42.27)$
= 5000 , $(10+4$





nd also the point closest to *a* on the line through *b*.

